Use of PCB Pallets in Wave Soldering
Patch components are used more and more on the circuit board, but there are still some perforated components between them. For this kind of board, selective soldering is the best solution, but not every company has enough funds to purchase selective soldering equipment, or the number of this type of circuit board is too small, specifically to buy selective soldering equipment is not Cost-effective. Manual welding is prohibited in certain industries such as the automotive industry
Therefore, in PCB wave soldering, using trays to block those patch components is a good method: reliable, fast production, and adaptability to high-capacity requirements.
www.smthelp.com
The benefits of using trays:
Lead-free soldering requires higher soldering temperatures. Therefore, the circuit board is more easily bent during welding. The tray provides maximum protection of the circuit board during soldering and prevents bending.
Similarly, in the automotive and consumer electronics industries, many special-shaped circuit boards have emerged for the needs of applications. It is sometimes difficult to transport these shaped plates with conventional chain rails and mesh belts, and placing the circuit board plates in trays allows any type of circuit board to be shipped.
By soldering some of the bottom components through the tray, it is also possible to use PCB wave soldering equipment for selective soldering of the product.
Since most trays are thick (sometimes 15 mm), solder certainly does not flow to the top of the board. The oxide layer on the solder surface will also be washed away by the edge of the tray before the board reaches the peak, so that when the solder starts, the tin is relatively clean.
By adding some stiffening strips to the tray, it can increase its hardness to withstand high-strength welding. It is also possible to install heat-absorbing blocks, component fixing devices and some other auxiliary devices on the upper part.
The use of pallets also helps standardize the width of the product line, soldering different circuit boards on the same production line, and can use bar code readers and other identification tools to quickly change process programs for different boards.
Although there are many advantages to using trays in lead-free soldering, it can also cause solder balls.
Requirements for pallet materials:
In order to maximize the service life of the trays, the trays must be made of materials that can withstand high temperatures and harsh process conditions, especially for lead-free soldering.
www.smthelp.com
To meet these requirements, the material used to make the tray must meet the following characteristics:
• High dimensional stability
• Good thermal shock resistance
• Can remain flat after repeated use
• Corrosion resistance (flux and cleaning agent)
• Does not absorb moisture
The use of the tray brings the process problems:
The flux system must be able to spray the circuit board completely with flux. Poor tray designs can lead to “shadow effects” in flux spraying: Some parts of the board have insufficient flux or no flux at all. The flux must be sprayed onto the board and spread through the capillary action.
Before the tray touches the crest, it must be heated in the preheating unit. A typical preheating configuration is a combination of heat pipes and hot air forced convection. If the temperature drops before contact with the peak, the tray will have an endothermic effect, making the welding process difficult to control.
The use of trays requires a wave height of up to 0.5 inches (12.5 mm). In the case of such a high pump speed, the use of nitrogen can help reduce dross. When using pallets in lead-free soldering, Vitronics Soltec’s perturbed “smart wave” can also promote tinning of the perforated component.
In addition, we must pay special attention to keeping the circuit board in the pallet flat. If there is a gap between the circuit board and the tray, the flux will flow into the gap, and the solder will flow to the board when passing through the peak. This will cause solder residue on the board.
The gap between the circuit board and the tray may cause solder residue on the circuit board
Circuit board and tray design recommendations:
Avoid placing larger components near the piercing element as this can cause shadowing effects and tin difficulties.
Leave proper clearance around the pins and edges of the through-hole components so that solder can flow. These tin guides will guide the solder to the seat of the tray opening, while also greatly improving the solder flowability.
www.smthelp.com
The tin slot at the tail of the tray allows the solder to flow smoothly back to the tin tank
The opening of the tray should be as large as possible to facilitate the flow of solder. This will reduce some of the welding defects, such as: short circuit and solder balls. At the same time, it is also beneficial to the solder filling of the through hole, because the large opening also means that there is more energy to enter the welding area.
Prepared by :ming@smthelp.com