Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)_副本

SMT small company survival magic weapon! Multi frequency, small batch,flexibility

SMT (Surface Mount Technology), or surface mount technology, is one of the most popular technologies and processes in the electronics assembly industry. In the Pearl River Delta represented by Shenzhen, the electronics and information industry is developed and the industry chain is complete. It is a veritable factory in the world.

Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)_副本

As the market environment changes and technology changes, in order to meet the increasingly personalized needs of end customers, manufacturers are constantly improving their products, constantly innovating according to market needs, and developing trendy styles and functions to adapt to the current market demand. In order to be able to quickly respond to market diversified and uncertain needs and quickly provide products that meet customer needs, “short, flat, and fast” has become an important feature of production sites during this period, on time, quality, quantity and at a minimum cost Manufacturing products that meet customer needs has become the goal of production management, but progress is seemingly more and more difficult due to resource constraints such as limited skilled personnel and tight equipment. In this case, SMT production is now in a state of small batches and multiple varieties. Because of the inherent production characteristics of the SMT production line, it uses the best production efficiency in large batches. Therefore, for small batches and multiple varieties, there are multiple line changes to complete the production conversion of the product. The SMT line is in an intermittent production state. The increase has caused problems in the production efficiency of the SMT line.

One
Benefits of small batches and multiple varieties

1.Improve adaptability to changes in demand
Small batch, single piece delivery
Reduce job preparation time
Multi-skilled employees
In-process quality assurance system
Generalization of equipment and tooling

  1. Make manufacturing issues and their weaknesses visible
    Quality failure
    Equipment failure
    Workload imbalance
    Turnover time
  2. Eliminate waste caused by improper production management and reduce production management costs
    Material waiting due to improper production management
    Unnecessary model changes due to improper production management
    Increase in indirect operations due to improper production management

4.Improve the adaptability of manufacturing to short delivery time
Eliminate stagnation (things / information)
Reduce the number of intermediate work in process
Synchronization

two
Characteristics of small batches and multiple varieties

Multi-variety parallel

Because many enterprises’ products are configured for customers, different products have different needs, and the resources of enterprises are among multiple varieties.

Resource sharing
Every task in the production process requires resources, but the resources that can be used in the actual process are very limited. For example, the problem of equipment conflicts often encountered in the production process is caused by the sharing of project resources. Therefore, limited resources must be properly allocated to meet project needs.

  1. Uncertainty of order result and production cycle
    Due to the instability of customer needs, the clearly defined nodes are inconsistent with the complete cycle of human, machine, material, method, ring, etc., the production cycle is often uncertain, and projects with insufficient cycles require more resources. , Increasing the difficulty of production control.
  • Material requirements change, resulting in serious procurement delays
    Due to the insertion or change of orders, it is difficult for external processing and procurement to reflect the order delivery time. Supply risks are extremely high due to small quantities and a single source of supply.

  • three
    Difficulties in small batch and multi-variety production

    1. Dynamic process path planning and deployment of virtual unit lines: emergency insertion, equipment failure, and bottleneck drift.
    2. Identification and drift of bottlenecks: before and during production
    3. Multi-level bottlenecks: bottlenecks on assembly lines, bottlenecks on virtual lines of parts, how to coordinate and couple.
    4. Buffer size: either backlog or poor interference resistance. Production batch, transfer batch, etc.
    5. Production scheduling: not only consider bottlenecks, but also the impact of non-bottleneck resources.

    Many varieties and small batch production models will also encounter many problems in enterprise practice, such as:
    Multi-variety and low-batch production, mixed scheduling is difficult
    Unable to deliver on time, too much “fire fighting” overtime
    Order requires too much follow-up
    Frequent changes in production priorities, the original plan could not be implemented
    Increasing inventory but often lacking critical materials
    The production cycle is too long, the lead time is infinitely expanded

    ▎How to implement automatic upgrade has become a trouble for OEM companies

    The electronic information industry is still a pillar industry in Shenzhen, with an industrial scale of more than 1.200 billion yuan, accounting for about 1/7 of the national electronic information manufacturing revenue. In Shenzhen, there are a large number of leading electronic information companies such as Huawei, ZTE, and TCL, as well as a large number of small-scale lean manufacturing and processing enterprises that were born in response to the needs of the times.

    Due to the production characteristics of traditional foundry companies, “different bills of materials for each order, different production processes, different cleaning standards, different packaging requirements, and different labeling specifications”, unlike large factories that do standard products, they can be automated on a large scale upgrade.

    How to use industrial robots, advanced automation management platforms, and information technology to help these enterprises achieve flexible production and agile manufacturing are the topics they care about in common.

    Under the pressure, many traditional OEM companies have begun to transform to ODM (Original Design Manufacturer), and gradually pay attention to independent intellectual property rights, start to make innovative products, and start to develop independent brands.

    ▎ Machine substitution may be a “beautiful trap”, how to realize flexible production is the key

    China’s Industry 4.0, like an aircraft carrier, propels China forward. For these small and small batch OEM companies, after experiencing the “prosperity era” brought by the demographic dividend, they are also thinking about how to take the road of independent innovation.

    Perhaps many OEM companies rely on the channel advantages accumulated over many years of operation and the natural industrial chain advantages of the Pearl River Delta. But the demographic dividend is no longer, the cost advantage is no longer, and the rise and penetration of the Internet has also led to major changes in production methods, management concepts, production equipment, and even raw materials. These factors have begun to cause some entrepreneurs to worry about the future.

    “Without the independent innovation of Chinese companies, we can only be a world factory. Without trial and error and iteration of research and development, we will never have our own core technology.”

    How to innovate? Is machine substitution really the general trend?

    For these manufacturers, there may be pitfalls in purely pursuing “machine substitution” oriented by automated equipment, mass production, and reduced manufacturing costs. Because for them, the key to “machine substitution” is how to implement software flexibility, agile programming, or automatic programming, just like “quick mode change” in TPS (transaction processing system).

    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning

    How to distinguish between PCBA board cleaning and non-washing in automotive electronics?

    How to distinguish between PCBA board cleaning and non-washing in automotive electronics?

    Edited by Ming: ming@smthelp.com

    Customers often do not understand why automotive electronics PCBA boards need to be cleaned reliably. Which electronic PCBAs need cleaning before use? Which ones don’t have to be cleaned? It is also difficult to distinguish and judge. The purpose of this article is to analyze the necessary reliability cleaning of automotive electronics PCBA, hoping to help customers and readers.

    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning

    In order to realize the control of driving and clock functions in the car, various types of electronic circuit boards are used to realize various control functions: engine driving management system or engine driving computer ECU, and new energy vehicles have more circuit boards, each of which is on average. The car has a circuit area of ​​1.5 square meters and more than 100 electronic circuit boards. These types are in electronic circuit boards that implement various functions. What needs cleaning? Which do not have to be cleaned?

    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning

    The function control panel of the car electronics is cleaned and not cleaned, and is often distinguished from the driver’s personal safety, the safety of the driving scene and the safety of the property. The function control related to the safety of the car and the personal safety of the third party is required. Do the cleaning to achieve high reliability technical requirements: for example, the engine management system ECU circuit board, the new energy vehicle power management system BMS circuit board and so on.

    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning

    The car also has other management systems, lighting control systems, navigation, music playback entertainment systems, door and window control and glass lift, seat functions and other auxiliary functions, because the density of these systems and human life safety is not too great, Often such electronic circuit boards can be made from no-clean, thereby reducing cost and meeting performance requirements.

    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)_副本
    Automotive electronics PCB PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning

    Driving circuit ECU, new energy vehicle BMS power management system process circuit board process cleaning, cleaning circuit board surface residue, removing flux, solder paste residue and residual effects of other pollutants in the process, truly reach the circuit The surface of the board assembly is clean, and the degree of ionic contamination is used as an indicator to measure the cleanliness of the board surface. This is the technical indicator that can truly achieve reliability guarantee. It can greatly improve the safety and reliability of the circuit board assembly products, and avoid unnecessary risks caused by the electrochemical corrosion of the circuit board and the defects caused by electromigration caused by poor working conditions, humidity and high temperature.

    In summary, all component processes that are closely related to life safety and driving safety must be reliably cleaned. It is currently recommended to use an environmentally safe water-based cleaning process.

    SMTHELP :SMT Professional Manufacturer PCB Cleaning Machine
    The product is suitable for use in automotive electronics, smart home products, communications electronics, consumer electronic product manufacturing process, to improve product reliability and to remove foreign bodies and electrostatic PCB surface
    PCB cleaner,nozzle cleaning machine,PCB Stencil cleaning machine, PCBA cleaning machine,Fixture cleaning machine,Printer Cleaning Machine,pneumatic Stencil cleaning machine,fully pneumatic washing machine Manufacturer

    https://www.smthelp.com/pcb-cleaning-machine/

    https://www.smthelp.com/scm5600d-pcba-cleaning-machine/

    PCBA CLEANING MACHINE SCM5600D (2)
    PCBA CLEANING MACHINE SCM5600D (2
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    Circuit board, PCBA cleaning is really important for EMS (Electronic Manufacturing Service)?

    Circuit board, PCBA cleaning, is it really important for EMS (Electronic Manufacturing Service)?

    Edited by Ming: ming@smthelp.com

    “Cleaning” is often overlooked during board (PCB) PCBA manufacturing and is considered to be not a critical step. However, with the long-term use of the product on the client side, the problems caused by the ineffective cleaning in the early stage caused many failures, and the rework or recall of the product caused a sharp increase in operating costs. Below, SMTHELP briefly explains the role of PCBA cleaning of circuit boards (circuit boards).

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    PC BA (Printed Circuit Assembly) has a number of process stages in the production process, each stage is contaminated to varying degrees, so the surface of the PCBA of the circuit board (circuit board) is left with various deposits or impurities, which will lower the product. Performance, and even cause product failure. For example, in the process of soldering electronic components, solder paste, flux, etc. are used for auxiliary soldering, and residues are generated after soldering, and the residue contains organic acids and ions, etc., in which organic acids corrode the circuit board (circuit board) PCBA, and The presence of electrical ions can cause short circuits and cause product failure.

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    There are many kinds of contaminants on PCB (PCB) PCBA, which can be classified into two types: ionic and non-ionic. The ionic pollutants are exposed to moisture in the environment, and electrochemical migration occurs after energization, forming a dendritic structure, resulting in a low resistance path and destroying the PCBA function of the circuit board (circuit board). Non-ionic contaminants can penetrate the insulating layer of PC B and grow dendrites under the surface of the PCB. In addition to ionic and non-ionic contaminants, there are also particulate contaminants such as solder balls, floating spots in solder baths, dust, dust, etc. These contaminants can lead to reduced solder joint quality, sharp solder joints during soldering, and Porosity, short circuit and many other undesirable phenomena.

     

    With so many pollutants, which ones are the most concerned? Fluxes or solder pastes are commonly used in reflow and wave soldering processes. They are mainly composed of solvents, wetting agents, resins, corrosion inhibitors and activators. Thermally modified products must be present after soldering. In all the pollutants, the post-weld residue is the most important factor affecting the quality of the product. The ionic residue tends to cause electromigration to reduce the insulation resistance, and the rosin resin residue is easy to adsorb. Dust or impurities cause an increase in contact resistance, and in severe cases, open circuit failure, so strict cleaning must be performed after welding to ensure the quality of PCBA of the circuit board (circuit board).

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    In summary, the cleaning of the circuit board (PCB) PCBA is very important, and “cleaning” is an important process that is directly related to the quality of the PCB (circuit board) PCBA, which is indispensable.

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    Circuit board, PCBA cleaning is really important, for EMS (Electronic Manufacturing Service)?

    SMTHELP :SMT Professional Manufacturer PCB Cleaning Machine
    The product is suitable for use in automotive electronics, smart home products, communications electronics, consumer electronic product manufacturing process, to improve product reliability and to remove foreign bodies and electrostatic PCB surface
    PCB cleaner,nozzle cleaning machine,PCB Stencil cleaning machine, PCBA cleaning machine,Fixture cleaning machine,Printer Cleaning Machine,pneumatic Stencil cleaning machine,fully pneumatic washing machine Manufacturer

    https://www.smthelp.com/pcb-cleaning-machine/

    https://www.smthelp.com/scm5600d-pcba-cleaning-machine/

    PCBA CLEANING MACHINE SCM5600D (2)
    PCBA CLEANING MACHINE SCM5600D (2
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    After the PCBA is cleaned, the board surface turns white, what should we do?

    After the circuit board is cleaned, the board surface turns white, what should we do?

    Edited by Ming: ming@smthelp.com

    First, the board surface is whitish after cleaning:

    In the electronic component manufacturing process, the PCBA circuit board is often over-wave soldered, and after the manual cleaning agent is used for cleaning, the board surface appears white (Figure 1).

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    Figure 1
    After the cleaning of the PCBA solder joints, the white surface of the board surface appears after being placed, and the white mark is scattered around the solder joints, which seriously affects the appearance acceptance.

    Second, the reason for the whitish surface of the board after cleaning:

    White residue is a common contaminant on PCBA and is generally a by-product of flux. Common white residues are polymerized rosin, unreacted activator, and lead metal chloride or bromide, which react with flux and solder. These substances expand in volume after moisture absorption, and some substances also hydrate with water. White residue is becoming more and more obvious. It is extremely difficult to remove these residues on the PCB. If the temperature is too hot or high, the problem is more serious. The infrared spectroscopy analysis of the rosin and residue on the PCB surface before and after the soldering process confirms the process. .

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    Regardless of whether the board has white residue after cleaning, or if the white material appears after the no-clean circuit board is stored, or the white substance on the solder joint found during the repair, there are four cases:

    1. Rosin in the flux: Most of the white matter produced after the cleaning is not clean, stored, and the solder joint fails, is the inherent rosin in the flux. Rosin is usually a transparent, hard and brittle solid material with no fixed shape, not a crystal. Rosin is thermodynamically unstable and has a tendency to crystallize. After the rosin crystallizes, the colorless transparent body becomes a white powder. If the cleaning is not clean, the white residue may be a crystalline powder formed by the rosin after the solvent is volatilized.

    When the PCB is stored under high humidity conditions, when the absorbed moisture reaches a certain level, the rosin gradually changes from a colorless and transparent glass state to a crystalline state, and a white powder is formed from a viewing angle.

    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    The essence is still rosin, but the shape is different, still has good insulation, and will not affect the performance of the board. The abietic acid and halide (if used) in the rosin are used together as an active agent. Synthetic resins generally do not react with metal oxides below 100 ° C, but react rapidly when the temperature is higher than 100 ° C. They volatilize and decompose faster, and have low solubility in water.

    1. Rosin denature: This is the substance produced by the reaction of rosin and flux during the welding process, and the solubility of this material is generally poor, it is not easy to be cleaned, and it stays on the board to form a white residue. But these white substances are all organic, still guarantee the reliability of the board.
    2. Organometallic salt: The principle of removing the oxide of the welding surface is that the organic acid reacts with the metal oxide to form a metal salt soluble in liquid rosin. After cooling, it forms a solid solution with the rosin, and is removed together with the rosin in the cleaning.

    If the welding surface and parts are highly oxidized, the concentration of the product after welding will be high. When the degree of oxidation of the rosin is too high, it may remain on the board together with the undissolved rosin oxide. At this time, the reliability of the board will be reduced.

    1. Metallic inorganic salts: These may be metal oxides in solders and halogen-containing active agents in flux or solder paste, halide ions in PCB pads, halide ion residues in the surface coating of components, halogen-containing materials in FR4 materials. The substance formed by the reaction of the halide ion released at a high temperature generally has a small solubility in an organic solvent.
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)
    PCBA cleaning method, cleaning process, PCBA cleaning machine, flux cleaning (1)

    In the assembly process, it is highly probable that the halogen-containing flux is used for the electronic auxiliary materials (although the supplier provides environmentally friendly flux, but the halogen-free flux is still relatively small), and the surface of the board remains after welding. Halogen-based ions (F, Cl, Br, l). These ionic halogen residues, which are not themselves white, are not sufficient to cause whitening of the surface. These substances form strong acids when exposed to water or moisture. These strong acids begin to react with the oxide layer on the surface of the solder joints to form acid salts, which are white substances that are seen.

    Third, after the circuit board is cleaned, the board surface is whitened:

    1, the general solution:

    1. Washing method Note: When washing the PCB, the PCBA should be tilted. Do not lay it flat. You can place the paper in the washing station, so that most of the washed solution will flow down;
  • Do not wash the plate repeatedly for repeated times, and increase the frequency of replacement depending on the situation;
  • 3, and then start from the washing water formula, you can ask the supplier to improve the formula, improve the cleaning degree and dissolution volatility.

    1. How to completely solve the problem of whitening of the board after cleaning the circuit board?

    For the whitening problem of PCBA circuit board cleaning, water-based cleaning agent can be used to meet the corresponding cleaning equipment to deal with it. It is safe and environmentally friendly, meets the requirements of current ROHS, CE, and other environmental protection regulations. It has high cleaning efficiency and completely solves the problem of whitening.

    SMTHELP :SMT Professional Manufacturer PCB Cleaning Machine
    The product is suitable for use in automotive electronics, smart home products, communications electronics, consumer electronic product manufacturing process, to improve product reliability and to remove foreign bodies and electrostatic PCB surface
    PCB cleaner,nozzle cleaning machine,PCB Stencil cleaning machine, Printer Cleaning Machine,pneumatic Stencil cleaning machine,fully pneumatic washing machine Manufacturer

    https://www.smthelp.com/pcb-cleaning-machine/

    https://www.smthelp.com/scm5600d-pcba-cleaning-machine/

    PCBA CLEANING MACHINE SCM5600D (2)
    PCBA CLEANING MACHINE SCM5600D (2)

    46737004 SCRAP HOUSING

                           46737004 SCRAP HOUSING

    AI spare parts. PCB handling system.Pick and place machine.SMT nozzles, Assembleon nozzle, NXT nozzle, FUJI nozzle, Hitachi nozzle, JUKI nozzle, KME nozzle, Panasert nozzle, Philips nozzle, Samsung nozzle, Sanyo nozzle, Sony nozzle, Yamaha nozzle, Assembleon nozzle.UNIVERSAL AI SPARE PARTS、UNIVERSAL PARTS,UIC,TDK.VCD .Axial Insertion.AI spare parts
    Universal 2596B、Universal 2596C、Universal 6287、Universal 6295 、Universal 9292A 、Universal 6292B、Universal 6292C、Universal 6291、Universal 6293A 、Universal 6293B、 Universal 6293C 、Universal 6241B、 Universal 6241D 、Universal 6241F、 Universal 6348、 Universal 6360A 、Universal 6360B 、Universal 6360D、 Universal 6380A 、Universal 6380B ETC
    PANASERT AI: Panasert AVB、Panasert AVF、Panasert AVK、Panasert AVK2、Panasert JV、Panasert JVK、Panasert JVK2、Panasert RH6、Panasert RH2、Panasert RHU、Panasert RH3、Panasert RHS、 RHU AVK2B、Panasert AVK3、Panasert AV131、Panasert RL131、Panasert RG131、Panasert JV131、Panasert RHS2、Panasert RSH2B1.Panasonic, Dynapert, Universal, Sanyo, Sony, Fuji, TDK, KME, Yamaha, Nitto, Philips, Juki, Samsung, Tenryu,

    We design and manufacture auto insertion machine,SMT equipment, and providing spare parts support. UNIVERSAL AI SPARE PARTS、UNIVERSAL PARTS,UIC,TDK.VCD SEQUENCER.Axial Insertion.AI spare parts
    Universal 2596B、Universal 2596C、Universal 6287、Universal 6295 、Universal 9292A 、Universal 6292B、Universal 6292C、Universal 6291、Universal 6293A 、Universal 6293B、 Universal 6293C 、Universal 6241B、 Universal 6241D 、Universal 6241F、 Universal 6348、 Universal 6360A 、Universal 6360B 、Universal 6360D、 Universal 6380A 、Universal 6380B ETC
    PANASERT AI: Panasert AVB、Panasert AVF、Panasert AVK、Panasert AVK2、Panasert JV、Panasert JVK、Panasert JVK2、Panasert RH6、Panasert RH2、Panasert RHU、Panasert RH3、Panasert RHS、 RHU AVK2B、Panasert AVK3、Panasert AV131、Panasert RL131、Panasert RG131、Panasert JV131、Panasert RHS2、Panasert RSH2B1.Panasonic, Dynapert, Universal, Sanyo, Sony, Fuji, TDK, KME, Yamaha, Nitto, Philips, Juki, Samsung, Tenryu,

    suppliers, manufacturers, factory, customized,

    Electronic Manufacturing
    PTH Assembly
    Universal 52338901 Motherboard.ATX/ITX/ITX2/MCOS/MVME2100,3100
    Tecplam offes fully automatic PTH lines, including radial, axial and jumper wire insertion. We constantly invest in the latest technology machinery,
    48820002 Carrier Clip Assembly ,Large Triple Span 5.0/7.5/10.0

    SMT-Surface Mount Technology(SMT)
    BHS: PCB board handling system, Loader, Unloader, Conveyor,Shuttle
    Printer: Solder paste screen printer
    SPI: Solder Paste Inspection
    Mounter: Chip Mounter, Pick and Place, IC Mounter, High Speed Mounter
    AOI Reflow Oven

    SMT:FUJI,Siemens,Panasonic,Universal,Assemblon,JUki,Yamaha,Samsung,DEK.ASM

    DIP, PCB Assembly,Chip Mounter, Pick and Place, IC Mounter, High Speed Mounter, Wave soldering,LED lighting, LED Lamp, LED Display, LED tube,UPS, Power Converter, Power Adepter, Mobile Charger, PCB board handling system, Loader, Unloader, Conveyor,Shuttle, Chip Mounter, Pick and Place, IC Mounter, High Speed Mounter Induction Cooker, AC, Electric Cooker, Fan, TV, Settle Box

    Southern Machinery Digital Catalog of Machines

    Digital Catalog of AI/SMT Machines

    Watch Full Video for the Digital Catalog of AI/SMT Machines

    See a Machine You Need?

    Thank you for watching our AI/SMT Video Catalog where we featured Pick & Place Machines, Axial Insertion Machines, Radial Insertion Machines, Printers, Wave Soldering Machines, Odd-Form Machines, SMT Stencil Cleaners, and much more. Did you see a SMT, THT, or other machine, spare part, or service you need? Request a quote and we will guide you through the rest.

    Sign-up for More Information:

    DIP, PCB Assembly,Chip Mounter, Pick and Place, IC Mounter, High Speed Mounter, Wave soldering,LED lighting, LED Lamp, LED Display, LED tube,UPS, Power Converter, Power Adepter, Mobile Charger, PCB board handling system, Loader, Unloader, Conveyor,Shuttle, Chip Mounter, Pick and Place, IC Mounter, High Speed Mounter Induction Cooker, AC, Electric Cooker, Fan, TV, Settle Box

    Stencil Cleaning: Advancing from Manual to Machine

    Improving Quality, Costs, Production, Environment and Safety

    Sign up to learn more about stencil cleaning. In this series we will compare different methods of cleaning stencils. Compare and contrast benefits and much more to serve your best stencil cleaning needs. Don't miss it!

    PCB Stencil Cleaning Comparison Chart

    Learn More About Stencil Cleaning!

    Stencil Cleaning Effects Planet & Productivity

    The Ultimate Stencil Cleaning System Comparison Chart

    We hold ourselves and our machinery to a higher standard. Emerging green technologies (EGTs) create changes with product design and automation which increase efficiencies for many categories including costs, materials, time, and the environment. Current technologies have updated to recycle and reclaim methods that used to simply be considered waste water. This is no longer the only option, nor the best option.

    In every capacity, your factory should aim at moving toward green practices that return on your investment for the long-term. When resources are limited, growth is limited; think about the future of your business when considering how you can implement best practices and technologies for your factory’s future.

    There are a number of different stencil cleaning systems, but choosing the best solution for your assembly will greatly affect your factory’s overall productivity.

    Our S-1688 Fully Pneumatic Stencil Cleaner is a full solution for your stencil cleaning process. Major manufacturing companies are impressed and filling their factory’s with our machine. To help you select the perfect cleaning process, here is a checklist to compare the different cleaning methods and processes. See why this is a must for every factory.





    Happy Earth Day! Stencil Cleaning Made Greener

    Pneumatic Stencil Cleaner Infographics for Earth Day | The Future of Stencil Cleaning

    Happy Earth Day from Southern Machinery!

    Did you know there’s a way to drastically reduce harmful waste from the stencil cleaning process while saving time, costs, and manual labor? We at Southern Machinery, believe in making the world a better place by advancing technologies toward greener solutions. That is why we promote our S-1688 Pneumatic Stencil Cleaner as the environmental choice for your factory.

    The future of stencil cleaning will be cleaner, faster, and help your EMS production perform with the highest quality and output levels.

    Some Facts:

    • 51-72% of solder defects are a result of the screen printing operation
    • Effective Stencil Cleaning Saves: Costs, Time, Labor, and Materials
    • Protect environment from Pollution, VOCs, Waste Water Pollution
    • Safety: Safe for workers, safe from fires, safe from chemical interactions
    • 100% closed loop system
    • 360-degree rotary pressure cleaning

     

    Click Below to Contact us:

    EMAIL US!

    Sign Up Below to Learn More:

    SIGN UP

    The Future of Stencil Cleaning _ SMThelp.com

    Click Below to Contact us:

    EMAIL US!

     

    Sign Up Below to Learn More:

    SIGN UP

     

    Questions to Ask When Looking for a Stencil Cleaning Machine

    PCB Stencil Cleaning Processes

    Stencil Cleaning: Consider Your BEST Options

    Stencil cleaning process checklist smthelp.com

    Did you know that certain stencil cleaners can help cut down your overall costs like labor costs, printing errors, and factory and environmental hazards? We have found that often times SMT Factory Owners and CEOs tend to overlook the costs within the stencil cleaning process that affect many factors down the operation line. It is not just the cost of the machine you are purchasing it is the overall cleaning system that you are investing in which has an effect on many different areas and should be addressed when considering your best stencil cleaning method.Here is a list of questions to consider when addressing your total investment in a Stencil Cleaning Process:
    How many SMT lines are in your factory?
    How many stencils are currently in use?
    How do you currently clean stencils? Manually? Ultrasonic? Fully Pneumatic?
    How much cleaning liquid do you use per month?
    Can the process effectively clean fine and ultra fine- pitch apertures?
    Does the process offer water and chemical reclamation/recycling?
    Is the process fire safe? chemical safe?
    Are there any health or safety hazards to consider?
    What is the maintenance and potential downtime?
    Does the machine consider current and future environmental regulations?
    Is it cost Effective, High ROI?
    Is there a built-in clean checking system?
    Can the process clean dry as well as fresh paste?
    Are there other objects to clean such as misprints?
    What is the environmental impact?
    What are the labor costs of each process?
    What are the operating costs?
    Is the machine fully automatic or semi-automatic? Programmable?
    Does the machine free the operator from the cleaning process?
    Does the machine require a specialized operator?
    Does the machine require manual re-positioning?
    What are the cleaning and drying times?
    Does the drying process leave a film?
    What size stencil does the process clean best?
    Does the machine clean small stencils efficiently?
    Does the machine handle large stencils?
    Does the process recycle cleaning solution?
    Lowers overall cleaning solution usage?
    What is the electricity usage?

    Overall Considerations:

    Total Costs
    Labor
    Productivity
    The Environment
    Time
    PCB Defects
    Misprinted PCB
    Solution Usage

     

     

    If you would like more information or help, we are here to answer any questions you have. We know that the process takes time and there are many considerations. Allow us to help you in your consideration of all factors that can affect your BEST PCB operations! We are always here for any support you need.

     

    Save

    Save